Programming language standardisation: Evolving programming languages

Magne Haveraaen

Bergen Language Design Laboratory (BLDL) Department of Informatics, University of Bergen, Norway

Procesadores de Lenguajes, Universidad de La Laguna La Laguna, 2025-03-25

Programming languages are not static

- Programming languages evolve
 - Java: new standard every 6 months
 - Python: new standard every year
 - JavaScript: new standard every year
 - C++: new standard every 3 years
 - Fortran: new standard every 5 years

Programming languages are not static

- Programming languages evolve
 - Java: new standard every 6 months
 - Python: new standard every year
 - JavaScript: new standard every year
 - C++: new standard every 3 years
 - Fortran: new standard every 5 years
- The classical languages are backwards compatible
 - Old programs continue working
 - WARNING: Old text books are still valid
 - WARNING: Old course notes are still valid

Technical advisor for C++ committee since 2011

ISO/IEC JTC1 / SC22 / WG21 C++

- Joint with INCITS technical committee PL22.16 -Programming Language C++
- Madrid (Spain) March 2011
 - The meeting that approved C++ 2011

C++

- 1979 C with Classes Bjarne Stroustrup, Bell Labs
- 1982 C++ Bjarne Stroustrup, Bell Labs
- 1985 C++ AT&T Bell Labs
- 1989 C++ 2.0 AT&T Bell Labs
- 1998 C++98 **ISO/IEC** (templates, STL)
- 2003 C++03 ISO/IEC
- 2011 C++11 ISO/IEC (concepts left out, lambdas, variadics)
- 2014 C++14 ISO/IEC
- 2017 C++17 ISO/IEC
- 2020 C++20 ISO/IEC (concepts light, modules, coroutines)
- 2023 C++23 ISO/IEC

Evolution of programming practices in C++

- C style programming
 - Address manipulation
 - Arrays decay to pointers
- Object-oriented programming
 - Encapsulation
- Generic / template programming
 - Capture the essence of algorithms and data structures
 - Concepts as a language feature
 - Replace C style arrays with standard library
- Value oriented programming
- Safety features
 - Modernising pointers (inspiration from Rust)
 - Profiles, preconditions

Programming language standardisation

- International Organization for Standardization ISO (1947)
 - An independent, non-governmental international organization with a membership of 164 national standards bodies
- International Electrotechnical Commission IEC (1906)
 - Prepares and publishes international standards for all electrical, electronic and related technologies – collectively known as "electrotechnology"
 - 62 full, 25 associate, 86 affiliate member countries
- ISO/IEC JTC 1 INFORMATION TECHNOLOGY (1987)
 - Purpose is to develop, maintain and promote standards in the fields of information technology (IT) and Information and Communications Technology (ICT)

Programming language standardisation USA

- American National Standards Institute ANSI
 - Oversees the development of voluntary consensus standards

- Coordinates U.S. standards with international standards so that American products can be used worldwide
- International Committee for Information Technology Standards INCITS
 - An ANSI-accredited standards development organization for Information technology
 - Coordinates activity between ANSI and joint ISO/IEC committees worldwide
 - Many times INCITS standards become the standard for the international community

ISO/IEC JTC1 / SC22 – INCITS

ISO/IEC Joint Technical Committee 1 / Subcommittee 22

- Programming languages, their environments and system software interfaces
 - Oftentimes called the "portability subcommittee".
- Working groups
 - WG4 COBOL
 - WG5 Fortran
 - WG9 Ada
 - WG14 C
 - WG17 Prolog
 - WG21 C++
 - WG23 Programming Language Vulnerabilities
 - WG24 Linux Standard Base (LSB)

Other relevant standardisation organisations – 1

- International Telecommunication Union ITU (1865)
 - specialized agency of the United Nations (from 1947)
 - concern information and communication technologies

Ecma International

- standards organization for information and communication systems
- an industry association founded in 1961
- Institute of Electrical and Electronics Engineers IEEE
 - association of professionals in these domains
 - formed in 1963 as a merger of
 - American Institute of Electrical Engineers (1884)
 - Institute of Radio Engineers (1912)
 - IEEE 754 Standard for Floating-Point Arithmetic

Other relevant standardisation organisations – 2

- World Wide Web Consortium W3C
 - main international standards organization for the World Wide Web
 - Web Ontology Language (OWL)
- Internet Engineering Task Force IETF
- Object Management Group OMG
 - defines UML, OCL
- Open Grid Forum
- OSGi Alliance
- The Open Group
 - Unix
- Khronos Group
 - OpenCL (Open Computing Language)

Ecma International

- Category: Software engineering and interfaces
 - Subcategory: ECMAScript®
 - Technical CommitteeTC39
 - ECMA-262 June 2024

ECMAScript® 2024 language specification

- Subcategory: Programming languages
 - Technical Committee TC49
 - TC49-TG2: ECMA-334 December 2023

C# language specification

ISO/IEC 20619:2023

- TC49-TG4: ECMA-367 June 2006

Eiffel: Analysis, design and programming language ISO/IEC 25436:2006

University of Bergen is a NFP member!

Bergen (Norway) – July 2023

- Ecma Technical Committee 39 (TC39)
 - Preparing ECMA-262, the ECMAScript standard
 - Covers: JavaScript, JSON

Standardisation of ECMAScript

- ECMAScript programming language
 - General purpose
 - Cross platform
 - Vendor-neutral
- BLDL @ UiB
 - Integrate students in the standardisation process
 - Support standardisation
 - Provide implementation prototype of new features
 - Evaluate impact of new features on language use
 - TG5: Experiments in programming language standardization
- Six meetings per year (3 hybrid, 3 virtual)
 - 28-30 May 2025 meeting of ECMAScript in Coruña, Spain

Alternate (for NCAR) on Fortran committee since 2019

INCITS TC PL22.3 - Programming Language Fortran "J3"

- Preparing for ISO/IEC JTC1 / SC22 / WG5 Fortran
- Las Vegas (US) October 2019, towards 202x, 202y

Introducing generics in Fortran 2028

- My 2019 tutorial "Reflecting on Generics for Fortran"
 - Suggested type-safe templates
 - Cut short other alternatives from being considered
 - Was unanimously accepted as the design path
- Subcommittee on Fortran generics initiated
 - Headed by Tom Clune (NASA)
 - Tom considers me "an external advisor"
 - Around 15 members, core of 3-5 very active members
 - Includes several vendors
 - Documents discussed in full J3 committee 1-2 times/year
 - Fortran generics is a decade long project
 - We are half way there!

Language evolution forces

- Small step improvements
 - Inputs from users to vendors
 - User surveys
 - Pressure of ideas from other languages

Paraphrasing Bjarne Stroustrup (BLDL 2009): A language extension benefitting thousands of developers may be detrimental to millions of developers

- Long term perspective for language evolution
 - Some work items may span multiple release cycles
 - Avoid introducing vulnerabilities (ISO WG23)
- NB! Lack of mathematical / formal methods skill set
 - Investigate implications of a language feature
 - Investigate interaction of language features
 - Check completeness of semantics

Language committees

- Classical languages
 - Strong standards organisations: ISO/IEC JTC1
 - Often ad hoc processes
- Modern languages
 - Ad hoc organisations
 - Java, Python Foundation
 - Often formalised a language evolution process
- Committee work
 - Social interaction
 - Perspectives on the ethos of the language
 - Trying to evolve the language for the benefit of its users

Summary

- Language standardisation / evolution
 - Long term vision should be there
- Typical stakeholders in language evolution process
 - Users who feel shortcomings
 - Vendors who understand limitations of compilers
- Missing stakeholders
 - Academics
 - Foundational understanding of PL theory
 - Not all PL theory is compatible with a language
 - "Theorem proving attitude"
 - What are the implications / interactions of features
 - Developers of IDEs and other tools

